
EECS 370: GREEN CARD FOR LEGv8
Arithmetic Operations Assembly code Semantics Comments

add ADD Xd, Xn, Xm X5 = X2 + X7 register-to-register

add & set flags ADDS Xd, Xn, Xm X5 = X2 + X7 flags NZVC

add immediate ADDI Xd, Xn, #uimm12 X5 = X2 + #19 0 ≤ 12 bit unsigned ≤ 4095

add immediate & set flags ADDIS Xd, Xn, #uimm12 X5 = X2 + #19 flags NZVC

subtract SUB Xd, Xn, Xm X5 = X2 - X7 register-to-register

subtract & set flags SUBS Xd, Xn, Xm X5 = X2 - X7 flags NZVC

subtract immediate SUBI Xd, Xn, #uimm12 X5 = X2 - #20 0 ≤ 12 bit unsigned ≤ 4095

subtract immediate & set flags SUBIS Xd, Xn, Xm X5 = X2 - #20 flags NZVC

Data Transfer Operations Assembly code Semantics Comments

load register LDUR Xt, [Xn, #simm9] X2 = M[X6, #18] double word load into Xt from Xn + #simm9

load signed word LDURSW Xt, [Xn, #simm9] X2 = M[X6, #18] word load to lower 32b Xt from Xn + #simm9; sign extend upper 32b

load half LDURH Xt, [Xn, #simm9] X2 = M[X6, #18] ½ word load to lower 16b Xt from Xn + #simm9; zero extend upper 48b

load byte LDURB Xt, [Xn, #simm9] X2 = M[X6, #18] byte load to least 8b Xt from Xn + #simm9 zero extend upper 56b

store register STUR Xt, [Xn, #simm9] M[X5, #12] = X4 double word store from Xt to Xn + #simm9

store word STURW Xt, [Xn, #simm9] M[X5, #12] = X4 word store from lower 32b of Xt to Xn + #simm9

store half word STURH Xt, [Xn, #simm9] M[X5, #12] = X4 ½ word load from lower 16b of Xt to Xn + #simm9

store byte STURB Xt, [Xn, #simm9] M[X5, #12] = X4 byte load from least 8b of Xt to Xn + #simm9

offset #simm9 = -256 to +255 -256 ≤ 9 bits signed immediate ≤ +255

move wide with zero MOVZ Xd, #uimm16, LSL N X9 = 0..0N0..0 zeros out Xd then place a 16b (#uimm) into the

first (N = 0)/second (N = 16)/third (N = 32)/fourth (N = 48)

16b slot of Xd

move wide with keep MOVK Xd, #uimm16, LSL N X9 = x..xNx..x place a 16b (#uimm) into the first (N = 0)/second (N = 16)/

third (N = 32)/fourth (N = 48) 16b slot of Xd, without changing the other values (x’s)

register aliases X28 = SP; X29 = FP; X30 = LR; X31 = XZR

Logical Operations Assembly code Semantics Using C operations of & | ^ << >>

and AND Xd, Xn, Xm X5 = X2 & X7 bit-wise AND

and immediate ANDI Xd, Xn, #uimm12 X5 = X2 & #19 bit-wise AND with 0 ≤ 12 bit unsigned ≤ 4095

inclusive or ORR Xd, Xn, Xm X5 = X2 | X7 bit-wise OR

inclusive or immediate ORRI Xd, Xn, #uimm12 X5 = X2 | #11 bit-wise OR with 0 ≤ 12 bit unsigned ≤ 4095

exclusive or EOR Xd, Xn, Xm X5 = X2 ^ X7 bit-wise EOR

exclusive or immediate EOR Xd, Xn, #uimm12 X5 = X2 ^ #57 bit-wise EOR with 0 ≤ 12 bit unsigned ≤ 4095

logical shift left LSL Xd, Xn, #uimm6 X1 = X2 << #10 shift left by a constant ≤ 63

logical shift right LSR Xd, Xn, #uimm6 X5 = X3 >> #20 shift right by a constant ≤ 63

Unconditional branches Assembly code Semantics Also known as Jumps

branch B #simm26 goto PC + #1200 PC relative branch PC + 26b offset; -2^25 ≤ #simm26

≤ 2^25-1; 4b instruction

branch to register BR Xt target in Xt Xt contains a full 64b address

branch with link BL #simm26 X30 = PC + 4; PC + #11000 PC relative branch to PC + 26b offset;

16 million instructions;

X30 = LR contains return from subroutine address

Conditional branches Assembly code Semantics Comments

conditional branch = 0 CBZ Xt #simm19 If (X2 == 0) goto PC + #99 if Xt = 0 branch to PC + 19b offset: -2^18 4b instructions

≤ #simm26 ≤ 2^18-1 4b instructions

conditional branch != 0 CBNZ Xt #simm19 If (X2 != 0) goto PC + #89 if Xt = 0 branch to PC + 19b offset: -2^18 4b instructions

≤ #simm26 ≤ 2^18-1 4b instructions

branch conditionally B.cond #simm19 if cond = true branch to PC +1 19b offset: -2^18 4b instructions

≤ #simm19 ≤ 2^18-1 4b instructions

Conditional cases (cond) Signed Numbers Unsigned Numbers Comments

= B.EQ Z=1 B.EQ Z=1 equal

≠ B.NE Z=0 B.NE Z=0 not equal

< B.LT N!=V B.LO C=0 less than: or lower

≤ B.LE ~(Z=0 & N=V) B.LS ~(Z==0 & N=V) less than or equal: or lower or same

> B.GT (Z=0 & N=V) B.HI (Z=0 & C=1) greater than: or higher

≥ B.GE N=V B.HS C=1 great than or equal: or higher or same

B.MI N=1 B.PL branch on minus: branch on plus

B.VS N=1 B.PL branch on overflow set; branch on overflow clear

Notes on FLAGS NVZC Set explicitly by arithmetic operations with “S” in the mnemonic

negative N msb of result = 1 indicates a negative result if operands are two’s complement

oVerflow V (carry out of msb) ⊗ (carry out of msb-1) = 1 indicates the result is an overflow if operands are two’s complement

zero Z result = 0

carry C carry out of msb = 1 indicates the result is all zeros

indicates a carry out of the msb of the result

Pseudoinstructions Assembly code Semantics Comments

move reg-to-reg MOV Xd, Xn Xd = Xn text replacement for ORR Xd, XZR, Xn

compare CMP Xn, Xm set flags NVZC text replacement for SUBS XZR, Xn, Xm

compare immediate CMPI Xn, #uimm12 set flags NVZC text replacement for SUBIS XZR, Xm, #uimm12

Copyright: Edgumn Rovert & University of Michigan EECS 370.

